Generalized Analytic Automorphic Forms for some Arithmetic Congruence subgroups of the Vahlen group on the n-Dimensional Hyperbolic Space

نویسنده

  • Rolf Sören Kraußhar
چکیده

This paper deals with a new analytic type of vectorand Clifford algebra valued automorphic forms in one and two vector variables. For hypercomplex generalizations of the classical modular group and their arithmetic congruence subgroups Eisensteinand Poincaré type series that are annihilated by Dirac operators, and more generally, by iterated Dirac operators on the upper half-space of Rn are discussed. In particular we introduce (poly-)monogenic modular forms on hypercomplex generalizations of the classical theta group. MSC Classification: 11 F 03, 30 G 35, 11 F 55.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modular Forms and Elliptic Curves over Q(ζ 5 )

Let ζ5 be a primitive fifth root of unity, and let F = Q(ζ5). In this talk we describe recent computational work that investigates the modularity of elliptic curves over F . Here by modularity we mean that for a given elliptic curve E over F with conductor N there should exist an automorphic form f on GL2, also of conductor N , such that we have the equality of partial L-functions LS(s, f) = LS...

متن کامل

k-hypermonogenic automorphic forms

In this paper we deal with monogenic and k-hypermonogenic automorphic forms on arithmetic subgroups of the Ahlfors-Vahlen group. Monogenic automorphic forms are exactly the 0-hypermonogenic automorphic forms. In the first part we establish an explicit relation between k-hypermonogenic automorphic forms and Maaß wave forms. In particular, we show how one can construct from any arbitrary non-vani...

متن کامل

Orthogonality relations for k-hypermonogenic automorphic forms

In this paper we deal with monogenic and k-hypermonogenic automorphic forms on arithmetic subgroups of the Ahlfors-Vahlen group. Monogenic automorphic forms are exactly the 0-hypermonogenic automorphic forms. In the first part we establish an explicit relation to Maaß wave forms. In the second part we introduce Clifford algebra valued k-hypermonogenic cusp forms. We construct k-hypermonogenic P...

متن کامل

Computing Modular Forms for GL2 over Certain Number Fields

The cohomology of an arithmetic group is built out of certain automorphic forms. This allows computational investigation of these automorphic forms using topological techniques. We discuss recent techniques developed for the explicit computation of the cohomology of congruence subgroups of GL2 over CM-quartic and complex cubic number fields as Hecke-modules.

متن کامل

The cohomology with local coefficients of compact hyperbolic manifolds - long version

We extend the techniques developed by Millson and Raghunathan in [MR] to prove nonvanishing results for the cohomology of compact arithmetic quotients M of hyperbolic n-space H with values in the local coefficient systems associated to finite dimensional irreducible representations of the group SO(n, 1). We prove that all possible nonvanishing results compatible with the vanishing theorems of [...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008